[LeetCode] 070. Climbing Stairs
-
date_range April 10, 2019 - Wednesday info
- Problem (Easy)
- Approach 1: (My Solution - Backtracking [Time Limit Exceeded!])
- Approach 2: (My Solution - Dynamic Programming)
- Approach 2: (My Solution - Dynamic Programming)
- Approach 3: (Fibonacci - Improved)
Problem (Easy)
- Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
- Input: 2
- Output: 2
- Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Example 2:
- Input: 3
- Output: 3
- Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
Approach 1: (My Solution - Backtracking [Time Limit Exceeded!])
Idea
Use Backtracking algorithm to find all possible ways.
Solution
class Solution1:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
res = [0]
self.backtrack(res, n, 0)
return res[0]
def backtrack(self, res, n, step):
if step > n:
return
if step == n:
res[0] += 1
return
for i in [1,2]:
self.backtrack(res, n, step+i)
Complexity
- Time: $O()$
- Space: $O()$
Approach 2: (My Solution - Dynamic Programming)
Idea
- State update rule: (1-D dp state matrix)
dp[i] = dp[i-1] + dp[i-2]
; - Initial state:
dp[0] = 1, dp[1] = 2. if n == 1, return 1
.
Solution
python
class Solution1:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
dp = [0 for _ in range(n)]
dp[0], dp[1] = 1, 2
for i in range(2, n):
dp[i] = dp[i-1] + dp[i-2]
return dp[-1]
Complexity
- Time: $O()$
- Space: $O()$
Approach 2: (My Solution - Dynamic Programming)
Idea
- State update rule: (1-D dp state matrix)
dp[i] = dp[i-1] + dp[i-2]
; - Initial state:
dp[0] = 1, dp[1] = 2. if n == 1, return 1
.
Solution
python
class Solution2:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
dp = [0 for _ in range(n)]
dp[0], dp[1] = 1, 2
for i in range(2, n):
dp[i] = dp[i-1] + dp[i-2]
return dp[-1]
Complexity
- Time: $O()$
- Space: $O()$
Approach 3: (Fibonacci - Improved)
Idea
- This problem is actually a Fibonacci series.
- Improve the Fibonacci generating method.
Solution
python
class Solution3:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
a, b = 1, 2
for _ in range(2, n):
c = a + b
a, b = b, c
return b
Complexity
- Time: $O()$
- Space: $O()$
KF