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Part X

Factor analysis

When we have data x(i) ∈ R
n that comes from a mixture of several Gaussians,

the EM algorithm can be applied to fit a mixture model. In this setting, we
usually imagine problems where we have sufficient data to be able to discern
the multiple-Gaussian structure in the data. For instance, this would be the
case if our training set size m was significantly larger than the dimension n
of the data.

Now, consider a setting in which n ≫ m. In such a problem, it might be
difficult to model the data even with a single Gaussian, much less a mixture of
Gaussian. Specifically, since the m data points span only a low-dimensional
subspace of Rn, if we model the data as Gaussian, and estimate the mean
and covariance using the usual maximum likelihood estimators,

µ =
1

m

m
∑

i=1

x(i)

Σ =
1

m

m
∑

i=1

(x(i) − µ)(x(i) − µ)T ,

we would find that the matrix Σ is singular. This means that Σ−1 does not
exist, and 1/|Σ|1/2 = 1/0. But both of these terms are needed in computing
the usual density of a multivariate Gaussian distribution. Another way of
stating this difficulty is that maximum likelihood estimates of the parameters
result in a Gaussian that places all of its probability in the affine space
spanned by the data,1 and this corresponds to a singular covariance matrix.

1This is the set of points x satisfying x =
∑

m

i=1 αix
(i), for some αi’s so that

∑

m

i=1 α1 =

1.
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More generally, unless m exceeds n by some reasonable amount, the max-
imum likelihood estimates of the mean and covariance may be quite poor.
Nonetheless, we would still like to be able to fit a reasonable Gaussian model
to the data, and perhaps capture some interesting covariance structure in
the data. How can we do this?

In the next section, we begin by reviewing two possible restrictions on
Σ, ones that allow us to fit Σ with small amounts of data but neither of
which will give a satisfactory solution to our problem. We next discuss some
properties of Gaussians that will be needed later; specifically, how to find
marginal and conditonal distributions of Gaussians. Finally, we present the
factor analysis model, and EM for it.

1 Restrictions of Σ

If we do not have sufficient data to fit a full covariance matrix, we may
place some restrictions on the space of matrices Σ that we will consider. For
instance, we may choose to fit a covariance matrix Σ that is diagonal. In this
setting, the reader may easily verify that the maximum likelihood estimate
of the covariance matrix is given by the diagonal matrix Σ satisfying

Σjj =
1

m

m
∑

i=1

(x
(i)
j − µj)

2.

Thus, Σjj is just the empirical estimate of the variance of the j-th coordinate
of the data.

Recall that the contours of a Gaussian density are ellipses. A diagonal
Σ corresponds to a Gaussian where the major axes of these ellipses are axis-
aligned.

Sometimes, we may place a further restriction on the covariance matrix
that not only must it be diagonal, but its diagonal entries must all be equal.
In this setting, we have Σ = σ2I, where σ2 is the parameter under our control.
The maximum likelihood estimate of σ2 can be found to be:

σ2 =
1

mn

n
∑

j=1

m
∑

i=1

(x
(i)
j − µj)

2.

This model corresponds to using Gaussians whose densities have contours
that are circles (in 2 dimensions; or spheres/hyperspheres in higher dimen-
sions).
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If we were fitting a full, unconstrained, covariance matrix Σ to data, it
was necessary that m ≥ n+ 1 in order for the maximum likelihood estimate
of Σ not to be singular. Under either of the two restrictions above, we may
obtain non-singular Σ when m ≥ 2.

However, restricting Σ to be diagonal also means modeling the different
coordinates xi, xj of the data as being uncorrelated and independent. Often,
it would be nice to be able to capture some interesting correlation structure
in the data. If we were to use either of the restrictions on Σ described above,
we would therefore fail to do so. In this set of notes, we will describe the
factor analysis model, which uses more parameters than the diagonal Σ and
captures some correlations in the data, but also without having to fit a full
covariance matrix.

2 Marginals and conditionals of Gaussians

Before describing factor analysis, we digress to talk about how to find condi-
tional and marginal distributions of random variables with a joint multivari-
ate Gaussian distribution.

Suppose we have a vector-valued random variable

x =

[

x1

x2

]

,

where x1 ∈ R
r, x2 ∈ R

s, and x ∈ R
r+s. Suppose x ∼ N (µ,Σ), where

µ =

[

µ1

µ2

]

, Σ =

[

Σ11 Σ12

Σ21 Σ22

]

.

Here, µ1 ∈ R
r, µ2 ∈ R

s, Σ11 ∈ R
r×r, Σ12 ∈ R

r×s, and so on. Note that since
covariance matrices are symmetric, Σ12 = ΣT

21.
Under our assumptions, x1 and x2 are jointly multivariate Gaussian.

What is the marginal distribution of x1? It is not hard to see that E[x1] = µ1,
and that Cov(x1) = E[(x1 − µ1)(x1 − µ1)] = Σ11. To see that the latter is
true, note that by definition of the joint covariance of x1 and x2, we have
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that

Cov(x) = Σ

=

[

Σ11 Σ12

Σ21 Σ22

]

= E[(x− µ)(x− µ)T ]

= E

[

(

x1 − µ1

x2 − µ2

)(

x1 − µ1

x2 − µ2

)T
]

= E

[

(x1 − µ1)(x1 − µ1)
T (x1 − µ1)(x2 − µ2)

T

(x2 − µ2)(x1 − µ1)
T (x2 − µ2)(x2 − µ2)

T

]

.

Matching the upper-left subblocks in the matrices in the second and the last
lines above gives the result.

Since marginal distributions of Gaussians are themselves Gaussian, we
therefore have that the marginal distribution of x1 is given by x1 ∼ N (µ1,Σ11).

Also, we can ask, what is the conditional distribution of x1 given x2? By
referring to the definition of the multivariate Gaussian distribution, it can
be shown that x1|x2 ∼ N (µ1|2,Σ1|2), where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2), (1)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21. (2)

When working with the factor analysis model in the next section, these
formulas for finding conditional and marginal distributions of Gaussians will
be very useful.

3 The Factor analysis model

In the factor analysis model, we posit a joint distribution on (x, z) as follows,
where z ∈ R

k is a latent random variable:

z ∼ N (0, I)

x|z ∼ N (µ+ Λz,Ψ).

Here, the parameters of our model are the vector µ ∈ R
n, the matrix

Λ ∈ R
n×k, and the diagonal matrix Ψ ∈ R

n×n. The value of k is usually
chosen to be smaller than n.
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Thus, we imagine that each datapoint x(i) is generated by sampling a k
dimension multivariate Gaussian z(i). Then, it is mapped to a k-dimensional
affine space of Rn by computing µ+Λz(i). Lastly, x(i) is generated by adding
covariance Ψ noise to µ+ Λz(i).

Equivalently (convince yourself that this is the case), we can therefore
also define the factor analysis model according to

z ∼ N (0, I)

ǫ ∼ N (0,Ψ)

x = µ+ Λz + ǫ.

where ǫ and z are independent.
Let’s work out exactly what distribution our model defines. Our random

variables z and x have a joint Gaussian distribution
[

z
x

]

∼ N (µzx,Σ).

We will now find µzx and Σ.
We know that E[z] = 0, from the fact that z ∼ N (0, I). Also, we have

that

E[x] = E[µ+ Λz + ǫ]

= µ+ ΛE[z] + E[ǫ]

= µ.

Putting these together, we obtain

µzx =

[

~0
µ

]

Next, to find, Σ, we need to calculate Σzz = E[(z − E[z])(z − E[z])T ] (the
upper-left block of Σ), Σzx = E[(z − E[z])(x − E[x])T ] (upper-right block),
and Σxx = E[(x− E[x])(x − E[x])T ] (lower-right block).

Now, since z ∼ N (0, I), we easily find that Σzz = Cov(z) = I. Also,

E[(z − E[z])(x− E[x])T ] = E[z(µ + Λz + ǫ− µ)T ]

= E[zzT ]ΛT + E[zǫT ]

= ΛT .

In the last step, we used the fact that E[zzT ] = Cov(z) (since z has zero
mean), and E[zǫT ] = E[z]E[ǫT ] = 0 (since z and ǫ are independent, and
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hence the expectation of their product is the product of their expectations).
Similarly, we can find Σxx as follows:

E[(x− E[x])(x− E[x])T ] = E[(µ+ Λz + ǫ− µ)(µ+ Λz + ǫ− µ)T ]

= E[ΛzzTΛT + ǫzTΛT + ΛzǫT + ǫǫT ]

= ΛE[zzT ]ΛT + E[ǫǫT ]

= ΛΛT +Ψ.

Putting everything together, we therefore have that

[

z
x

]

∼ N

([

~0
µ

]

,

[

I ΛT

Λ ΛΛT +Ψ

])

. (3)

Hence, we also see that the marginal distribution of x is given by x ∼
N (µ,ΛΛT +Ψ). Thus, given a training set {x(i); i = 1, . . . , m}, we can write
down the log likelihood of the parameters:

ℓ(µ,Λ,Ψ) = log

m
∏

i=1

1

(2π)n/2|ΛΛT +Ψ|1/2
exp

(

−
1

2
(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

)

.

To perform maximum likelihood estimation, we would like to maximize this
quantity with respect to the parameters. But maximizing this formula ex-
plicitly is hard (try it yourself), and we are aware of no algorithm that does
so in closed-form. So, we will instead use to the EM algorithm. In the next
section, we derive EM for factor analysis.

4 EM for factor analysis

The derivation for the E-step is easy. We need to compute Qi(z
(i)) =

p(z(i)|x(i);µ,Λ,Ψ). By substituting the distribution given in Equation (3)
into the formulas (1-2) used for finding the conditional distribution of a
Gaussian, we find that z(i)|x(i);µ,Λ,Ψ ∼ N (µz(i)|x(i),Σz(i)|x(i)), where

µz(i)|x(i) = ΛT (ΛΛT +Ψ)−1(x(i) − µ),

Σz(i)|x(i) = I − ΛT (ΛΛT +Ψ)−1Λ.

So, using these definitions for µz(i)|x(i) and Σz(i)|x(i), we have

Qi(z
(i)) =

1

(2π)k/2|Σz(i)|x(i)|1/2
exp

(

−
1

2
(z(i) − µz(i)|x(i))TΣ−1

z(i)|x(i)(z
(i) − µz(i)|x(i))

)

.
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Let’s now work out the M-step. Here, we need to maximize
m
∑

i=1

∫

z(i)
Qi(z

(i)) log
p(x(i), z(i);µ,Λ,Ψ)

Qi(z(i))
dz(i) (4)

with respect to the parameters µ,Λ,Ψ. We will work out only the optimiza-
tion with respect to Λ, and leave the derivations of the updates for µ and Ψ
as an exercise to the reader.

We can simplify Equation (4) as follows:
m
∑

i=1

∫

z(i)
Qi(z

(i))
[

log p(x(i)|z(i);µ,Λ,Ψ) + log p(z(i))− logQi(z
(i))
]

dz(i) (5)

=

m
∑

i=1

Ez(i)∼Qi

[

log p(x(i)|z(i);µ,Λ,Ψ) + log p(z(i))− logQi(z
(i))
]

(6)

Here, the “z(i) ∼ Qi” subscript indicates that the expectation is with respect
to z(i) drawn from Qi. In the subsequent development, we will omit this
subscript when there is no risk of ambiguity. Dropping terms that do not
depend on the parameters, we find that we need to maximize:
m
∑

i=1

E
[

log p(x(i)|z(i);µ,Λ,Ψ)
]

=
m
∑

i=1

E

[

log
1

(2π)n/2|Ψ|1/2
exp

(

−
1

2
(x(i) − µ− Λz(i))TΨ−1(x(i) − µ− Λz(i))

)]

=
m
∑

i=1

E

[

−
1

2
log |Ψ| −

n

2
log(2π)−

1

2
(x(i) − µ− Λz(i))TΨ−1(x(i) − µ− Λz(i))

]

Let’s maximize this with respect to Λ. Only the last term above depends
on Λ. Taking derivatives, and using the facts that tr a = a (for a ∈ R),
trAB = trBA, and ∇AtrABATC = CAB + CTAB, we get:

∇Λ

m
∑

i=1

−E

[

1

2
(x(i) − µ− Λz(i))TΨ−1(x(i) − µ− Λz(i))

]

=

m
∑

i=1

∇ΛE

[

−tr
1

2
z(i)

T
ΛTΨ−1Λz(i) + trz(i)

T
ΛTΨ−1(x(i) − µ)

]

=
m
∑

i=1

∇ΛE

[

−tr
1

2
ΛTΨ−1Λz(i)z(i)

T
+ trΛTΨ−1(x(i) − µ)z(i)

T
]

=

m
∑

i=1

E
[

−Ψ−1Λz(i)z(i)
T
+Ψ−1(x(i) − µ)z(i)

T
]
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Setting this to zero and simplifying, we get:

m
∑

i=1

ΛEz(i)∼Qi

[

z(i)z(i)
T
]

=
m
∑

i=1

(x(i) − µ)Ez(i)∼Qi

[

z(i)
T
]

.

Hence, solving for Λ, we obtain

Λ =

(

m
∑

i=1

(x(i) − µ)Ez(i)∼Qi

[

z(i)
T
]

)(

m
∑

i=1

Ez(i)∼Qi

[

z(i)z(i)
T
]

)−1

. (7)

It is interesting to note the close relationship between this equation and the
normal equation that we’d derived for least squares regression,

“θT = (yTX)(XTX)−1.”

The analogy is that here, the x’s are a linear function of the z’s (plus noise).
Given the “guesses” for z that the E-step has found, we will now try to
estimate the unknown linearity Λ relating the x’s and z’s. It is therefore
no surprise that we obtain something similar to the normal equation. There
is, however, one important difference between this and an algorithm that
performs least squares using just the “best guesses” of the z’s; we will see
this difference shortly.

To complete our M-step update, let’s work out the values of the expecta-
tions in Equation (7). From our definition of Qi being Gaussian with mean
µz(i)|x(i) and covariance Σz(i)|x(i), we easily find

Ez(i)∼Qi

[

z(i)
T
]

= µT
z(i)|x(i)

Ez(i)∼Qi

[

z(i)z(i)
T
]

= µz(i)|x(i)µT
z(i)|x(i) + Σz(i)|x(i).

The latter comes from the fact that, for a random variable Y , Cov(Y ) =
E[Y Y T ]−E[Y ]E[Y ]T , and hence E[Y Y T ] = E[Y ]E[Y ]T +Cov(Y ). Substitut-
ing this back into Equation (7), we get the M-step update for Λ:

Λ =

(

m
∑

i=1

(x(i) − µ)µT
z(i)|x(i)

)(

m
∑

i=1

µz(i)|x(i)µT
z(i)|x(i) + Σz(i)|x(i)

)−1

. (8)

It is important to note the presence of the Σz(i)|x(i) on the right hand side of

this equation. This is the covariance in the posterior distribution p(z(i)|x(i))
of z(i) give x(i), and the M-step must take into account this uncertainty



9

about z(i) in the posterior. A common mistake in deriving EM is to assume
that in the E-step, we need to calculate only expectation E[z] of the latent
random variable z, and then plug that into the optimization in the M-step
everywhere z occurs. While this worked for simple problems such as the
mixture of Gaussians, in our derivation for factor analysis, we needed E[zzT ]
as well E[z]; and as we saw, E[zzT ] and E[z]E[z]T differ by the quantity Σz|x.
Thus, the M-step update must take into account the covariance of z in the
posterior distribution p(z(i)|x(i)).

Lastly, we can also find the M-step optimizations for the parameters µ
and Ψ. It is not hard to show that the first is given by

µ =
1

m

m
∑

i=1

x(i).

Since this doesn’t change as the parameters are varied (i.e., unlike the update
for Λ, the right hand side does not depend on Qi(z

(i)) = p(z(i)|x(i);µ,Λ,Ψ),
which in turn depends on the parameters), this can be calculated just once
and needs not be further updated as the algorithm is run. Similarly, the
diagonal Ψ can be found by calculating

Φ =
1

m

m
∑

i=1

x(i)x(i)T−x(i)µT
z(i)|x(i)Λ

T−Λµz(i)|x(i)x(i)T+Λ(µz(i)|x(i)µT
z(i)|x(i)+Σz(i)|x(i))ΛT ,

and setting Ψii = Φii (i.e., letting Ψ be the diagonal matrix containing only
the diagonal entries of Φ).


